
Privacy Flag Project Enabling Crowd-sourcing based privacy protection for smartphone
applications, websites and Internet of Things deployments

Integration, test and
validation processes in the
Privacy Flag context

Infocom World 2017, Athens

Prof. Yannis Stamatiou
CTI / University of Patras – Business Administration Dept.

Modules that are currently
integrated, fine-tuned, and running

• Security and privacy enablers

• Crowd sourcing monitoring of privacy risks with
distributed agents

• Browser add-ons

• Smartphone application

• Observatory, Early Warning System, and Database
Server

• Website and backend management platform

Integration
test

Validation
test

System
test

Unit
test

Unit
test

Unit
test

Unit
test

Tested module

Design information

Assembled Software

Validated Software

Other system elements
Operational System

Software requirements

Module

Module

Module

Module

1

1

1

1

2

3

4

1. Individual unit testing.

2. Integration of individual units to implement

the Privacy Flag platform.

3. Validation test of the integrated platform

against the requirements.

4. First round of integrated platform testing.

5. Feedback to developers and implementation

of corrective measures – quick individual unit

testing against reported problems.

6. Integration of new individual unit modules.

7. Second round of final platform testing.

8. Pilot operation and testing with a group of

real users.

Testing

Evaluation

Reliability
model

Debug
Test

results

Expected
resultsTest

Configuration

Software
Configuration

Errors

Error
rate data

Corrections

Predicted
reliability

The integration and testing
methodology

The use case testing
template

What was expected from partners
Example use case: Website and backend management platform

1) Identify your tests in D5.1
(partner acronym – test
number, e.g. DNET – 05).

2) Set up test case according to
specs, i.e. simulate the

Actor(s), the Trigger, and
Preconditions according to

Description.
3) Run the test and compare

run flow and results against the
Normal (expected) flow.

5) Provide a written report (for
all assigned tests) to CTI on the

execution of the test case,
findings, results, and corrective

actions (if necessary).

4) If applicable and necessary,
please take into account (and

fill in) the rest of the fields.

Use Case ID: CTI_DB_1
Use Case Name: Execution of sample queries

Created By: Yannis Stamatiou Last Updated By: Yannis Stamatiou
Date Created: 7/3/2016 Date Last Updated: 7/3/2016

Use Case ID: CTI_DB_1
Use Case Name: Execution of sample queries

Created By: Yannis Stamatiou Last Updated By: Yannis Stamatiou
Date Created: 7/3/2016 Date Last Updated: 7/3/2016

Actors: Distributed agents and users (through questionnaires).
Description: This test will evaluate the ability of the database to correctly

execute sample queries on sample data.
Trigger: A connection from an agent or users.

Preconditions: The query arrives, intact, to the database
Postconditions: The results of the query match the expected results, as reflected

by the database scheme and sample contents.
Normal Flow: The results are promptly returned and are as expected based on

the stored values.
Alternative Flows:

Exceptions: Query results are faulty or query results are not returned at all.
Includes:

Special Requirements: The database is up and running.
Legal Considerations:

Assumptions: The database server is correctly set-up and configured while the

database contents are correct.
Notes and Issues:

What was expected from partners
Example use case: Database (Case 1)

Use Case ID: CTI_DB_2
Use Case Name: Data confidentiality

Created By: Yannis Stamatiou Last Updated By: Yannis Stamatiou
Date Created: 7/3/2016 Date Last Updated: 7/3/2016

Use Case ID: CTI_DB_2
Use Case Name: Data confidentiality

Created By: Yannis Stamatiou Last Updated By: Yannis Stamatiou
Date Created: 7/3/2016 Date Last Updated: 7/3/2016

Actors: Data exchanged with other platform modules.
Description: Test whether the connection with the DB is secure, i.e. data

encryption and authentication mechanisms are implemented and

enabled.
Trigger: Initiation of communication between the DB and another module

(e.g. Distributed Agents).
Preconditions: The database and platform modules are correctly configured for

communication.
Postconditions: Data is exchanged between the database and any connecting

module in encrypted format.
Normal Flow: Data is properly encrypted.

Alternative Flows:
Exceptions: Data is not in encrypted format.

Includes:
Special Requirements: The involved modules and the database are correctly set-up and

configured.
Legal Considerations:

Assumptions: All modules are in an appropriate operating condition.
Notes and Issues:

What was expected from partners
Example use case: Database (Case 2)

Use case 4 Result Test description

Verification Check: This is a stress test for the server

according to which the testing team will find the threshold

point at which the response time of the server drops

significantly. This will test only the ability of the server to

sustain an acceptable connection rate without taking into

account the database response times (this will be a

separate test for the database module).

Succeeded The “paessler”

tool

(https://www.paes

sler.com/tools/we

bstress) was used

to perform a stress

test on the server

that hosts the

databases for the

smartphone

application and

the browser add-

on, as well as the

whole backend

system in order to

provide Quality of

Service (QoS) to PF

services.

Observatory, Database, and
Server

Use case 5 Result Test description

Verification Check: This will test whether all data

connections between the actors and the database are

suitably encrypted, i.e. whether the SSL protocol is

activated with the correct connection parameters (e.g.

encryption algorithm used and key sizes).

On-going This test checks

whether the

server opens,

correctly an

SSL/TLS

connection when

service requests

are accepted.

Use case 6 Result Test description

Verification Check: This test will evaluate the ability of the database to

correctly execute sample queries on sample data.

Succeeded The mysqlslap tool was

used for stress-testing

the database for the

correct and fast

execution of thousands of

connection requests. This

tool emulates a variable

client workload on a

MySQL server and

reports the timing of

each stage. It works as if

multiple clients were

accessing the server.

Observatory, Database, and
Server

Use case 7 Result Test description

Verification Check: Test whether the connection with the

DB is secure, i.e. data encryption and authentication

mechanisms are implemented and enabled.

On-going This test checks

whether the data

are correctly

encrypted upon

their transmission

to and from the

database.

Observatory, Database, and
Server

With respect to the configuration on which the rest of the tests

are implemented, the server on which the database resides has

the following characteristics:

 Memory: 4GB

 Processors: (1 processor with 4 cores)

 Hard disk: 200GB

We see that the current configuration is limited. However, the

results of the database (DB_1) and server workload (SE_1) tests

were satisfactory and demonstrate that the database and the

server can sustain heavy workloads which amount to 5000,

approximately, connection requests per second which is far

beyond the expected workload for the PF platform.

Testing configuration

We simulated the simultaneous use of the server in the following scenarios:
1. Privacy Flag Observatory, i.e. each user should visit the website

http://150.140.193.133:2080/privacy/addon/new_metrics.php which includes the
PF Threat Observatory.

2. Use of PF add-on, i.e., each user runs the GET call
http://150.140.193.133:3000/addon/questionnaire_eng since, whenever the add-
on is loaded, this GET call is used in order to display the UPRAAM questionnaire to
them. After that, other GET and POST calls are used as well but we simply test how
many users may use simultaneously the add-on without any error.

3. Use of PF smartphone application, i.e., each user runs the GET call
http://150.140.193.133:3000/smartphone/questionnaire since, whenever the app
is loaded, this GET call is used in order to display the UPRAAM questionnaire to
them. After that, other GET and POST calls are used as well but we simply test how
many users may open simultaneously the smartphone app without any error.

Simulations

The results were the following:

PF Observatory

 Average Click Time 3.319 ms, 32.795 Clicks, 711 Errors

 Total Number of Clicks: 32.795 (711 Errors)

 Average Click Time of all URLs: 3.247 ms

PF Add-on

 Average Click Time 85 ms, 38.724 Clicks, 5 Errors

 Total Number of Clicks: 38.724 (5 Errors)

 Average Click Time of all URLs: 85 ms

PF Smartphone Application

 Average Click Time 57 ms, 47.047 Clicks, 0 Errors

 Total Number of Clicks: 47.047 (0 Errors)

 Average Click Time of all URLs: 57 ms

Results

Some indicative test results
for the Database and Server

Some indicative test results for
the Observatory

Use Case: SA_01 – App version 2

Test description Test Result Action

Difference in API when posting package name Failed Fixed

UPRAAM questions not loaded correctly Failed Fixed

Server error Failed Fixed

Error when posting using username instead of user_name Failed Fixed

Final test Success

Use Case: SA_02 – App version 2

Test description Test Result Action

Difference in API when posting package name Failed Fixed

UPRAAM questions not loaded correctly Failed Fixed

Server error Failed Fixed

Error when posting using username instead of user_name Failed Fixed

Server is down due to error messages Failed Fixed

Server is up and down due to wrong script update Failed Fixed

JSON body not created correctly, specs and implementation

not the same, all fields updated to be in alphanumeric order

Failed Fixed

Server is down Failed Fixed

Final test Success

Smartphone application

Use Case: SA_01 – App version 3
Test description Test Result Action
Final test Success

Use Case: SA_02 – App version 3
Test description Test Result Action
When used in Android version lower than 6, user is able to

send his own evaluation for an app but not the permissions

(as only exist in version 6 and above).

JSON body was not created correctly and in app permissions

fields none value was sent

Failed Fixed

Server is down Failed Fixed
Final test Success

Smartphone application

Browser Add-On
Use Case: BA_01
Test description Test Result Action
Check API status failed, server was not reachable,

internet security restrictions

Failed Fixed

Check API status failed, server was down, due to

inactivity server was shutdown

Failed Fixed

Wrong fields when posting url, not including full

url address

Failed Fixed

Wrong message when error state Failed Fixed
UPRAAM questions not retrieved correctly Failed Fixed
Final test Success

Use Case: BA_02
Test description Test Result Action
Check API status failed, server was not reachable,

internet security restrictions

Failed Fixed

Check API status failed, server was down, due to

inactivity server was shutdown

Failed Fixed

Wrong fields when posting url, not including full

url address

Failed Fixed

Wrong message when error state Failed Fixed
Wrong JSON body from add-on to server Failed Fixed

Server down due to error calls Failed Fixed
Final test Success

Use case # Result Test description

PE_02: Verify that the created

system just picks relay nodes

inside of an EU country

Succeeded In a comprehensive testrun that contains of

fetching 1000 websites, it was ensured that

just relay nodes in EU countries were chosen.

PE_03: Verify that a usable

quality of service is given

Succeeded In a comprehensive testrun that contains of

1000 website fetching processes while

measuring the fetching time, it was shown

that the average loading time for more than

half of the fetched websites decreased and

the general standard deviation with the EU

routing extension is way lower than before.

See the graphs in D4.2 for more details.

PE_01: Verify that the IP

changes after activating the

enabler

Skipped Since the plans changed and it was agreed

that the privacy enabler will _not_ be used for

the whole communication, there is no on/off

switch. Additionally, the secure

communication technique is not deployed in

the browser add-on yet.

PE_04: Verify that there are

no connection leaks

Skipped Since the plans changed and it was agreed

that the privacy enabler will _not_ be used for

the whole communication, there are course

leaks in the regular browsing that is not

handled via our proxy.

T

Security and Privacy
enablers

Website and backend
management platform

Privacy Flag

Use case #2 Result Test description

The number of authenticated users is performing actions in

the Privacy Flag backend and system runs without an error

for the Wordpress backend.

Succeeded Verified that the

load page for the

Wordpress

backend was

efficient for

multiple logged in

users

The number of authenticated users is performing actions in

the Privacy Flag backend and system runs without an error

for the custom coded backend.

On-going At this moment

custom backend is

still not in its final

phase of

implementation.

Use case #1 Result Test description

User starts an action on the privacy flag webpage and

system responds as expected. The test is executed using

Google Chrome Page Load which measures loading of all

pages. Measurement is done Page is loaded in less then

10s.

Succeeded Verified that the

load page was

under < 5s for all

pages (average

4.23s).

Use case #3 Result Test description

A user logs in the backend and should be able to access

only resources which he is authorized to access after

starting the session. This is tested by tring to opening url

direclty without loging in and tring to use functionalities

which only loged in user could access.

On-going At this moment,

custom backend is

still not in its final

phase of

implementation.

Use case #4 Result Test description

A user should be able to access the table with a ranking list

of assessed websites and smartphone application. The data

is pulled from the database and the table should be filled

in with latest assessments.

On-going At this moment,

the table is

deployed but the

data in the

backend are not

ready to be

presented to the

end users.

Website and backend
management platform

